FAK is required for Schwann cell spreading on immature basal lamina to coordinate the radial sorting of peripheral axons with myelination.

نویسندگان

  • Matthew Grove
  • Peter J Brophy
چکیده

Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ErbB signaling has a role in radial sorting independent of Schwann cell number.

In the peripheral nervous system, Schwann cells make myelin, a specialized sheath that is essential for rapid axonal conduction of action potentials. Immature Schwann cells initially interact with many axons, but, through a process termed radial sorting, eventually interact with one segment of a single axon as promyelinating Schwann cells. Previous studies have identified genes that are require...

متن کامل

β1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination

Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and beta1 integrins are required for axonal sorting, but the downstream signals are largely unk...

متن کامل

Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells.

Schwann cells (SCs) differentiate into a myelinating cell when simultaneously adhering to an axon destined for myelination and basal lamina. We are interested in defining the signaling pathway activated by basal lamina. Using SC/sensory neuron (N) cocultures, we identified beta1 integrin and F-actin as components of a pathway leading to myelin gene expression and myelination (Fernandez-Valle et...

متن کامل

Regulation of Schwann cell function by the extracellular matrix.

Laminins and collagens are extracellular matrix proteins that play essential roles in peripheral nervous system development. Laminin signals regulate Schwann cell proliferation and survival as well as actin cytoskeleton dynamics, which are essential steps for radial sorting and myelination of peripheral axons by Schwann cells. Collagen and their receptors promote Schwann cell adhesion, spreadin...

متن کامل

Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons

In dystrophic mice, a model of merosin-deficient congenital muscular dystrophy, laminin-2 mutations produce peripheral nerve dysmyelination and render Schwann cells unable to sort bundles of axons. The laminin receptor and the mechanism through which dysmyelination and impaired sorting occur are unknown. We describe mice in which Schwann cell-specific disruption of beta1 integrin, a component o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 40  شماره 

صفحات  -

تاریخ انتشار 2014